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Abstract

Gene-environment (GxE) interaction is one potential explanation for the missing heritability

problem. A popular approach to genome-wide environment interaction studies (GWEIS) is

based on regression models involving interactions between genetic variants and environ-

ment variables. Unfortunately, GWEIS encounters systematically inflated (or deflated) test

statistics more frequently than a marginal association study. The problematic behavior may

occur due to poor specification of the null model (i.e. the model without genetic effect) in

GWEIS. Improved null model specification may resolve the problem, but the investigation

requires many time-consuming analyses of genome-wide scans, e.g. by trying out several

transformations of the phenotype. It is therefore helpful if we can predict such problematic

behavior beforehand. We present a simple closed-form formula to assess problematic

behavior of GWEIS under the null hypothesis of no genetic effects. It requires only pheno-

type, environment variables, and covariates, enabling quick identification of systematic

test statistic inflation or deflation. Applied to real data from the Alzheimer’s Disease Neuro-

imaging Initiative (ADNI), our formula identified problematic studies from among hundreds

GWEIS considering each metabolite as the environment variable in GxE interaction. Our

formula is useful to quickly identify problematic GWEIS without requiring a genome-wide

scan.

Introduction

Gene-environment (GxE) interaction is one potential way to unravel the missing heritability

problem [1–3]. Genome-wide GxE interaction studies are becoming popular, as evidenced
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by recent reviews [4–9]. In large-scale genomic analyses, such as genome-wide association

studies (GWAS) and genome-wide environment interaction studies (GWEIS), hypothesis

tests based on regression models are widely used to discover genetic susceptibility variants.

Each genetic variant is marginally examined with a univariate regression model in a GWAS,

and the analysis may be adjusted for covariates—such as sex and age. GWEIS is similarly

conducted in a regression model that involves GxE interaction. Due to low power for testing

interactions between genetic variants and environment variables (statistical interaction),

however, a joint test for the presence of genetic effects allowing GxE interaction [10] is fre-

quently used [11–14]. Its simplicity is an advantage over other existing methods, and we

focus on the joint test throughout this paper. With GWAS data, up to a million genetic

variants can be tested, and the multiplicity of hypotheses can be accounted for. For valid dis-

covery of genetic susceptibility variants, it is necessary that the type I error is properly con-

trolled. Systematic inflation or deflation in test statistics over all loci means that the study is

problematic; population stratification and cryptic relatedness are typical reasons. A poor

specification of null model (i.e. the model which includes no genetic effect but may include

covariate/environment variables) may also cause problematic behavior of the test statistics

unexpected under the null hypothesis, because then the null hypothesis is false for all loci

regardless of the presence of genetic effects. Problematic behavior is observed in GWEIS

more frequently than in GWAS [15, 16].

The severity of problematic behavior can be quantified by the median or mean of the

chi-squared statistics for association from a genome-wide scan. For example, the genomic

inflation factor constant λ is estimated by the median [17] or mean [18, 19] of genome-wide

chi-squared statistics. Currently, numerous feature variables tend to be collected from a large

number of participants in cohort or biobank studies [20]. Researchers often have many candi-

date variables that can be used as covariates and environment variables in GxE interaction

analyses. Severe systematic inflation (or deflation) in genome-wide test statistics indicates that

the study is problematic. However, the computational load is high when one needs numerous

genome-wide scans with large samples, as in recent biobank studies, in which a large number

of candidate environment variables needs to be evaluated. Moreover, with genome-wide

imputed data [21, 22] or whole-genome sequencing data, a larger number of variants is tested

for association than with SNPs (single nucleotide polymorphisms) in GWAS. It would there-

fore be helpful if problematic behavior could be found before conducting a computationally

expensive genome-wide scan.

By assuming no genetic effect, we present a novel closed-form approximation to the mean

of the genome-wide joint GxE interaction test statistics, which can be used to assess problem-

atic behavior due to null model misspecification. The formula disregards characteristics of

genetic loci, thereby enabling preliminary use before computing chi-squared statistics by

genome-wide scan. We show that the approximation agrees well with the mean of the chi-

squared statistics from various joint GxE interaction tests for GWAS data from the ADNI. Our

approximation is also valid for marginal association tests. The approximation formula reveals

that the joint GxE interaction test is sensitive to null model misspecification, whereas the mar-

ginal association test is not.

The remainder of the paper is organized as follows. In the Materials and Methods section,

we provide the proposed approximation formula, describe the real data application using

SNP-GWAS data from ADNI for joint GxE interaction and marginal association analyses, and

provide the setup of simulation studies to evaluate the performance of the approximation. In

the Results section, we give the results from the real data application and simulation studies.

In the Discussion section, we summarize the results and discuss about the proposed approach

both theoretically and empirically.

Quick assessment for systematic test statistic inflation/deflation

PLOS ONE | https://doi.org/10.1371/journal.pone.0219825 July 18, 2019 2 / 27

Funding: This work was supported by Japan

Society for the promotion of science (http://www.

jsps.go.jp/english/), grant numbers JP16K00064

(received author is M.U.), JP16K08638 (received

authors are M.U. and G.T.). Data collection and

sharing for this project was funded by the

Alzheimer’s Disease Neuroimaging Initiative (ADNI)

(National Institutes of Health Grant U01

AG024904) and DOD ADNI (Department of

Defense award number W81XWH-12-2-0012).

ADNI is funded by the National Institute on Aging,

the National Institute of Biomedical Imaging and

Bioengineering, and through generous

contributions from the following: AbbVie,

Alzheimer’s Association; Alzheimer’s Drug

Discovery Foundation; Araclon Biotech; BioClinica,

Inc.; Biogen; Bristol-Myers Squibb Company;

CereSpir, Inc.; Eisai Inc.; Elan Pharmaceuticals,

Inc.; EliLilly and Company; EuroImmun; F.

Hoffmann-La Roche Ltd and its affiliated company

Genentech, Inc.; Fujirebio; GE Healthcare; IXICO

Ltd.; Janssen Alzheimer Immunotherapy Research

& Development, LLC.; Johnson & Johnson

Pharmaceutical Research & Development LLC.;

Lumosity; Lundbeck; Merck & Co., Inc.; Meso

Scale Diagnostics, LLC.; NeuroRx Research;

Neurotrack Technologies; Novartis

Pharmaceuticals Corporation; Pfizer Inc.; Piramal

Imaging; Servier; Takeda Pharmaceutical

Company; and Transition Therapeutics. The

Canadian Institutes of Health Research is providing

funds to support ADNI clinical sites in Canada.

Private sector contributions are facilitated by the

Foundation for the National Institutes of Health

(www.fnih.org). The grantee organization is the

Northern California Institute for Research and

Education, and the study is coordinated by the

Alzheimer’s Disease Cooperative Study at the

University of California San Diego. ADNI data are

disseminated by the Laboratory for Neuro Imaging

at the University of Southern California. The

funders had no role in study design, data collection

and analysis, decision to publish, or preparation of

the manuscript.

Competing interests: We have the following

interests: Data collection and sharing for this

project was funded by the Alzheimer’s Disease

Neuroimaging Initiative (ADNI) (National Institutes

of Health Grant U01 AG024904) and DOD ADNI

(Department of Defense award number W81XWH-

12-2- 0012). ADNI is funded by the National

Institute on Aging, the National Institute of

Biomedical Imaging and Bioengineering, and

through generous contributions from the following:

AbbVie, Alzheimer’s Association; Alzheimer’s Drug

Discovery Foundation; Araclon Biotech; BioClinica,

Inc.; Biogen; Bristol-Myers Squibb Company;

https://doi.org/10.1371/journal.pone.0219825
http://www.jsps.go.jp/english/
http://www.jsps.go.jp/english/
http://www.fnih.org


Materials and methods

The approximation formula

Suppose that n samples are observed with phenotypic value (binary, numeric value, or a factor)

denoted by y1, . . ., yn, and L genetic variants, gl = (gl,1, . . ., gl,n)T for l = 1, . . ., L, are to be tested

for association with the phenotype. We introduce p variables, wT
l;i ¼ ðwl;i1; . . . ;wl;ipÞ for sample

i (i = 1, . . ., n) at the lth locus to be tested for association (i.e.H0l), such as gl itself or an interac-

tion between gl and an environment variable. Let zTi ¼ ðzi1; . . . ; ziqÞ denote q covariates (e.g.

sex or age) of sample i to be adjusted in common for all L tests. We consider L hypothesis

tests of the null hypothesis H0l: βl = 0 under the following regression model for the conditional

mean of yi with transformation,

Zi ¼ ZfEðyijw
T
l;i; z

T
i Þg ¼ wT

l;ibl þ zTi gl; ð1Þ

for i = 1, . . ., n, where η is a monotone increasing function, and b
T
l ¼ ðbl;1; . . . ; bl;pÞ and gTl ¼

ðgl;1; . . . ; gl;qÞ are the regression coefficients. The above model reduces to the ordinary linear

regression model if η is the identity function and yi follows a Gaussian distribution. The model

reduces to the logistic regression model if η is the logit function and yi follows a Bernoulli dis-

tribution. The model under H0l (i.e. Zi ¼ zTi g) is referred to as the null model throughout the

paper.

In what follows, we show that the above test includes the joint GxE interaction test as well

as the marginal association test. Let xi for the ith sample be an environment variable to be

tested for interaction with gl,i. Here we allow multivariate environment variables for xi. Then,

if wl,i = gl,ixi, the above test turns out to be the joint GxE interaction test of Kraft et al. [10]

with xi as environment variables, in which the first element is one for all i. If xi = 1 for all i and

p = 1, the test reduces to the marginal association test.

We study the chi-squared statistic for the score test of the above regression model (1).

According to [23], the test statistic for testing H0l: βl = 0 can be expressed as follows:

tl ¼ uTðQ~Z
fW lÞð

fWT
l Q~Z

fW lÞ
� 1
ðQ~Z

fW lÞ
Tu; ð2Þ

where Q~Z ¼ I � P~Z , P~Z ¼
eZðeZTeZÞ� 1eZT ,fW l ¼ O

1=2Wl,
eZ ¼ O

1=2Z, O = diag(ω1, . . ., ωn),
WT

l ¼ ðw
T
l;1; . . . ;wT

l;nÞ, Z
T ¼ ðzT

1
; . . . ; zTn Þ, the ωis are positive values specific to the regression

model, and uT = (u1, . . ., un) depends on y1, . . ., yn. The above tl in (2) is just another represen-

tation of the standard score test statistic, and hence, the null distribution is asymptotically chi-

squared with p degrees of freedom (pdf).

For example, tl reduces to the score statistic for a logistic regression model by setting ui ¼
ðyi � m̂iÞ=

ffiffiffiffi
o
p

i with oi ¼ m̂ið1 � m̂iÞ, m̂i ¼ 1=f1þ expð� zTi ĝÞg, and ĝ is the maximum likeli-

hood estimator under the null hypothesis βl = 0. More generally, tl reduces to the score statistic

for a more general regression model having loglikelihood function ℓ = ℓ(η) by setting ui ¼
ð@=@ZiÞ‘=

ffiffiffiffi
o
p

i with ωi = −(@2/@2ηi)ℓ evaluated at the null hypothesis βl = 0. Furthermore, if

ωi = 1 for all i, ĝ ¼ ðZTZÞ� 1ZTy, and u = y, then

Tl ¼
tl

ðkQZyk
2
� tlÞ=n

ð3Þ

is approximately the t-test statistic in a Gaussian linear regression model. For the above repre-

sentation of the score test statistic, see [23] for mathematical details.
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We specifically provide the form of (2) for joint GxE interaction test. By defining eX ¼
O

1=2X where XT ¼ ðxT
1
; . . . ; xTn Þ, the relation wl,i = gl,ixi can be written in matrix form as

Wl = GlX, and also asfW l ¼ Gl
eX, where Gl = diag(gl,1, . . ., gl,n). Then, (2) is expressed as

tl ¼ uTfQ~ZðGl
eXÞgfðGl

eXÞTQ~ZðGl
eXÞg

� 1

fQ~ZðGl
eXÞg

T
u: ð4Þ

The Kraft’s 2df test is obtained if xi = (1, Ei) with an environment variable Ei considered for

GxE interaction. For marginal association test, letting eg l ¼ O
1=2gl, (2) is given by

tl ¼ fðQ~Zeg lÞ
Tug

2

=egTl Q~Zeg l: ð5Þ

Systematic inflation (or deflation) of test statistics can be quantified by the overall behavior

of genome-wide test statistics. Under the presence of population stratification, empirical distri-

bution from test statistics is inflated from w2
1

to lw2
1

[24]. This inflation factor λ can be esti-

mated from test statistics, t1, . . ., tL. Two estimators for λ are the median of t1, . . ., tL divided

by the theoretical median of w2
1

distribution [17] and the mean [18]. Deviation of the estimated

λ from one suggests that test statistics are problematic, e.g. due to the presence of population

stratification or cryptic relatedness.

We study the mean of genome-wide test statistics analytically. Specifically, we approximate

the expectation of the mean of test statistics for the L loci, tmean ¼ 1

L

PL
l¼1
tl,

Eg1 ;...;gL
ðtmeanÞ ¼

1

L

XL

l¼1

Egl
tlð Þ ð6Þ

by

1

L

XL

l¼1

tr fEgl
ðfWT

l Q~Z
fW lÞg

� 1

Egl
fðQ~Z

fW lÞ
TuuTðQ~Z

fW lÞg
h i

;

where Eg1 ;...;gL
and Egl

denote the expectations with respect to the joint distribution of g1, . . .,

gL and to the marginal distribution of gl, respectively. If q = 1, the matrix inverse is just the

reciprocal. Hence, the proposed approximation is a multi-dimensional extension of the

approximation of the mean of a ratio by the ratio of means. In order to derive the above

approximation, we impose the following assumption for each tested variant independently:

gl,1, . . ., gl,n are independently and identically distributed whose all moments are finite, with

mean and variance denoted by μl and s2
l , respectively (e.g. with a binomial distribution of

size 2 and success probability being the minor allele frequency (MAF), which is the law

under Hardy–Weinberg equilibrium (HWE)). We also assume that the gl are independent of

u, Z, and X. Since the approximation applies separately for each l, each variant may have a

different genotype distribution (i.e. different MAF), and variant frequencies may be corre-

lated due to linkage disequilibrium. The above assumptions exclude the case where the

tested variant gl itself causes systematically inflated test statistics, e.g., due to population

stratification, cryptic relatedness, sample difference of genotyping efficiency, or a batch

effect. In addition, we assume that p� q and Z contains X. Without loss of generality, the

first p columns of Z correspond to X, or Z = (Z1:p, Z(p+1):q) = (X, Z(p+1):q), where Z1:p repre-

sents the first p columns of Z and Z(p+1):q are the remaining columns. Now we study the

expectation of tl with respect to gl. Our approximation formula for the expectation of tl with
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respect to gl is:

Egl
ðtlÞ � tr fEgl

ðfWT
l Q~Z

fW lÞg
� 1

Egl
fðQ~Z

fW lÞ
TuuTðQ~Z

fW lÞg
h i

¼ tr
Xn

i¼1

ex iex
T
i ðQ~ZÞii

( )� 1
Xn

i¼1

ex iex
T
i ðQ~ZuÞ

2

i

( )" #

¼ tapprox;

ð7Þ

where the approximation holds by ignoring O(n−1) terms. The derivation is given in S1

Appendix, in which the proof is based on an induction and asymptotic expansion. In the

above formula, ðQ~ZÞii is 1 minus the leverage score of the ith datum, 1 � ðP~ZÞii, while ðQ~ZuÞi
is the ith residual from a regression of u on eZ. Notably, the formula (7) no longer contains

characteristics of gl. As a result, (6) is approximated by (7). The formula (7) can be used to

investigate the overall behavior of tl without requiring a genome-wide scan. In S1 Appendix,

we show that, if the null model is correct, the above tapprox is close to p, the expected value of

tmean. A large difference between tapprox and p indicates problematic null model specification

because we assume that the gls do not cause a problem. Analogous to the genomic inflation

factor, we consider the scaled version of tapprox,

lapprox ¼ tapprox=p;

and, similarly, lmean = tmean/p. The approximation formula for the Gaussian linear regression

model (3) is

Tapprox ¼
tapprox

ðkQZyk
2
� tapproxÞ=n

: ð8Þ

Similarly, the scaled versions are lapprox = Tapprox/p and lmean = Tmean/p, in which

Tmean ¼ 1

L

PL
l¼1
Tl.

The case where lapprox is close to one suggests that the null model is appropriate (or at least

has no problematic behavior), and it is expected that the test statistics behave properly unless

genetic variants cause problems in the test statistics. Checking systematic inflation or deflation

by marginal association scan allows to check whether genetic variants cause problems. On the

other hand, a large discrepancy from one suggests null model misspecification, in which case

systematically inflated test statistics will be observed after genome-wide scan and the test is

unreliable.

Real data application

We illustrate the validity and usefulness of our approximation through application to a real

GWAS dataset obtained from the publicly available Alzheimer’s Disease Neuroimaging Initia-

tive (ADNI) database (adni.loni.usc.edu). The ADNI was launched in 2003 as a public-private

partnership, led by Principal Investigator Michael W. Weiner, MD. The primary goal of ADNI

has been to test whether serial magnetic resonance imaging (MRI), positron emission tomog-

raphy (PET), other biological markers, and clinical and neuropsychological assessments can be

combined to measure the progression of mild cognitive impairment and early Alzheimer’s dis-

ease. For up-to-date information, see www.adni-info.org. ADNI is an ongoing, longitudinal

study with primary purpose being to explore the genetic and neuroimaging information asso-

ciated with late-onset Alzheimer’s disease (LOAD). The study investigators recruited elderly

subjects older than 65 years. The cohort comprised about 400 subjects with mild cognitive

impairment, about 200 subjects with Alzheimer’s disease, and about 200 healthy controls.
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Each subject was followed for at least 3 years. During the study period, the subjects were

assessed with magnetic resonance imaging (MRI) measures and psychiatric evaluation to

determine cognitive status at each time point. Study subjects gave written informed consent

at the time of enrollment for imaging and genetic sample collection and completed question-

naires approved by Institutional Review Board (IRB) of each participating sites (http://adni.

loni.usc.edu/wp-content/uploads/how_to_apply/ADNI_Acknowledgement_List.pdf). We

obtained approval from the ADNI Data Sharing and Publications Committee for use of the

data and analyzed the data anonymously.

The ADNI-GWAS data were obtained from 818 DNA samples of ADNI1 participants

using the Illumina Human 610-Quad genotyping array [25]. The genotype data we used is

in PLINK format available from ADNI website (http://adni.loni.usc.edu/) which includes

620,901 SNPs for 757 individuals. We applied a quality control procedure by excluding SNPs

with missing genotype rate > 0.05, HWE test P< 10−10, and MAF < 5%; the total number of

remaining SNPs was 521,203.

The dataset with 757 samples is comprised of multiple ethnic groups. We computed princi-

pal components (PCs) using the EIGENSOFT package [26, 27]. The first and second PCs are

given in S1 Fig, which indicates the presence of population stratification. Our approximation

imposes a stringent assumption that all samples follow the same distribution for each locus. It

does not cover the case where population stratification exists, and the approximation is not

guaranteed under the presence of population stratification due to association between pheno-

type and genotypes. To see the performance on data without population stratification, we cre-

ated another dataset by extracting 684 non-Hispanic Caucasian samples from 757 samples

after excluding one individual from pairs showing cryptic relatedness (revealed by the PLINK

[28] pairwise p̂ statistic being greater than 0.125), and we excluded subjects whose reported

sex did not match the sex inferred from X chromosome SNPs. We used two datasets, one with

the 684 samples and another with the 757 samples. Since population stratification is absent in

the former dataset, it is expected that lapprox well approximates lmean, while it is not guaranteed

that the approximation is well for the latter dataset. To make the approximation workable, we

considered adjusting for PCs as covariates [26]. Although an appropriate number of PCs for

adjustment depends on the population structure and the sample size, we included top 10 PCs,

which is the number generally accepted within the psychiatric genetics community [29]. We

also considered top 3 and 5 PCs for covariates in order to evaluate the influence of the number

of PCs for adjustment.

To check the accuracy of our approximation, we compared lapprox with lmean computed

from the genome-wide test statistics from the joint GxE interaction and marginal association

analyses. We obtained environment variables, phenotypes, and covariates from the R package

ADNIMERGE provided by ADNI. We chose five phenotypes: height (HEIGHT), body mass

index (BMI), whole brain volume (WholeBrain), intracranial volume (ICV), and mini mental

state examination (MMSE), which are all quantitative. For environment variables in GxE inter-

action analyses, we used 142 metabolite variables stored in the admcdukep180fia object in

ADNIMERGE gathered by the Alzheimer’s disease Metabolomics Consortium. By setting val-

ues coded as “< LOD” as missing, and excluding metabolites showing missing rate greater

than 20%, we had 117 metabolites for analysis. Because conducting genome-wide scans for all

117 variables is time-consuming, we used only nine variables—lysoPC.a.C16.0, PC.ae.C38.2,

PC.ae.C40.3, C10, PC.aa.C40.5, PC.ae.C36.3, SM‥OH‥C14.1, SM‥OH‥C22.1, and SM.C24.0

—as environment variables for genome-wide joint GxE interaction analyses using linear mod-

els for the five phenotypes. Among the nine variables, two variables were chosen based on

application of the proposed approximation formula to the joint GxE interaction test with each

of the five phenotypes and each of 117 metabolite variables as the environment variable. First,
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we computed lapprox for joint GxE interaction test with respect to the five phenotypes and 117

metabolites by adjusting for sex and age. We stored the results in S1 Table. The scatter plots of

the phenotype-environment pairs showing lapprox> 1.5 are given in S2 Fig. There seemed to

be roughly two groups: the first group exhibited quadratic relationship between phenotype

and environment variable rather than linear, and the second group included seeming outliers.

Therefore, the large discrepancy of lapprox from one was caused by the null model specification.

For the first group, we randomly chose the BMI—PC.ae.C38.2 pair. For the second group, we

randomly chose the BMI—PC.ae.C40.3 pair. The remaining seven metabolites were chosen

randomly.

In the analyses for the nine metabolites and five phenotypes, we attempted to automatically

resolve the systematic inflation by using a Box–Cox transformation [30] of the phenotype

(actually, the transformation was applied to the phenotype subtracted the minimum value and

added 1 to make the values positive). First, we applied the standard Box–Cox transformation

based on normality (i.e. making the transformed phenotype distribution close to normal)

using the “boxCox” function implemented in the car package in R. Next, we optimized the

Box–Cox transformation in terms of the closeness of lapprox to one, which addresses the sys-

tematic inflation issue directly.

Our proposed approximation can also be applied to the score test for generalized linear

models. We dichotomized the five quantitative phenotypes by whether the phenotype value is

greater than its mean, and applied the score test for a logistic regression model to joint GxE

interaction and marginal association tests.

We considered the impact on the approximation when the real genotype data is replaced

by simulated genotype data. We repeated the same analyses for the nine metabolites and

five phenotypes on the ADNI 684 samples described above with the simulated genotype data

rather than with the real genotype data, while phenotype, environment, and covariates were

fixed. In the above simulation procedure, 10,000 unlinked loci were simulated using PLINK

--simulate option, where MAFs were randomly generated from a uniform distribution in

[0.05,0.5]. We also repeated the above analyses using the artificial genotype data for the ADNI

data with the 757 samples.

To see the impact of null model specification, we investigated the BMI—PC.ae.C38.2 and

BMI—PC.ae.C40.3 pairs in detail. We considered sophisticating null modeling by applying a

quadratic model rather than the linear model or removing outliers. Voorman et al. [15], Tchet-

gen Tchetgen and Kraft [31] and Almli et al. [16] proposed a robust test using the Huber–

White robust variance for the GxE interaction test to account for null model misspecification.

We applied the robust joint GxE interaction test using the Almli’s robust joint interaction

program available from “http://genetics.emory.edu/labs/epstein/software/robust-joint-

interaction/”. Another solution to the systematic inflation of test statistics is to use the genomic

control-adjusted p-values, i.e. chi-squared test statistics divided by a constant so that the

median matches the expected value of one. We applied the genomic control-adjustment for

the two examples.

Simulation studies

To study the behavior of lapprox for joint GxE interaction and marginal association tests, we

carried out extensive simulation experiments. Simulation scenarios are described in Table 1.

The aims of each scenario are as follows.

• Baseline scenario. This is a baseline for comparison. Other scenarios are a slight modification

of the baseline scenario.
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• Association among environment, covariate variables and/or genotypes (Scenarios 1a, 1b, 1c,

and 1d). The aim is to assess the influence on the proposed approximation of association

among environment, covariate variables and/or genotypes. Scenarios 1a, 1b, and 1c consider

the association between covariate/environment variables and genotypes, which may arise

due to population stratification or genetic architecture. Scenario 1d considers the association

between environment and covariate variables.

• Misspecified null model (Scenarios 2a, 2b, 2c, 2d, and 2e). The aim is to assess the impact of

the misspecified null model on the approximation. It is expected that the misspecification

deviates the value of lmean from one. Scenarios 2a and 2b consider that the null model misses

the covariate associated with genotypes, for example, adjustment for population stratifica-

tion is not applied or inadequate. Scenario 2c considers that the null model misspecifies the

functional form of the environment variable. Scenarios 2d and 2e consider the presence of

outlier(s).

• Environment/covariate variable distribution (Scenarios 3a, 3b, 3c, and 3d). This scenario is

intended to investigate the approximation performance under several kinds of environment

and covariate variables. We consider four scenarios, considering continous (e.g. age), binary

categorical (e.g. sex), and ordinal categorical (e.g. questionnaire score) variables.

• Genotype distribution (Scenarios 4a, 4b, and 4c). This scenario is intended to evaluate the

impact of the distribution of the genetic variants. Scenario 4a considers the correlation

Table 1. Description of simulation scenarios.

Scenario Description

Baseline scenario

Base No association among environment, covariate variable and genotypes

Correctly specified null model

One covariate and environment variables are normally distributed (continuous)

Genotypes are in linkage equilibrium with uniformly distributed minor allele frequencies

Association among environment, covariate variables and/or genotypes

1a Genotypes are associated with covariate

1b Genotypes are associated with environment variable

1c Genotypes are associated with covariate and environment variables

1d Environment variable is associated with covariate.

Misspecified null model

2a Covariate associated with genotypes is missed

2b Covariate associated with genotypes and environment variable is missed

2c Linear null model is incorrectly specified

2d One outlier is included

2e Ten outliers are included

Environment/covariate variable distribution

3a Five covariates and environment variables are normally distributed (continuous)

3b One covariate and environment variables are uniformly distributed (continuous)

3c One covariate and environment variables are binary variable (binary categorical)

3d One covariate and environment variables are ordinal variable (ordinal categorical)

Genotype distribution

4a Genotypes are in linkage disequilibrium with uniformly distributed minor allele frequencies

4b Genotypes are in linkage equilibrium with Beta distributed minor allele frequencies

4c Genotypes are in linkage disequilibrium with Beta distributed minor allele frequencies

https://doi.org/10.1371/journal.pone.0219825.t001
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between genetic variants due to linkage disequilibrium, while scenarios 4b and 4c consider

the different allele frequency spectrum.

We considered four effect size scenarios. Let bG, bZ, and bGE denote the parameters of geno-

type, covariate and GxE interaction effects on the phenotype. Then, the four scenarios are

given as triplets (bG, bZ, bGE):(0, 0, 0) (no effect of genotype, covariates and GxE interaction),

(1, 0, 0) (genotype effect, and no covariates and GxE interaction effects), (0, 1, 0) (covariate

effect, and no genotype and GxE interaction effects) and (0, 0, 1) (GxE interaction effect, and

no genotype and covariate effects). For the scenarios under the presence of any genotypic

effect, (bG, bZ, bGE) = (1, 0, 0) and (0, 0, 1), we considered three genotype codings, additive,

recessive, and dominant. We repeated the simulations 200 times to compare lapprox with lmean.
Two sample sizes, n = 1000 and 10000, were considered. To evaluate the discrepancy between

lapprox and lmean, we summarized mean and standard deviation in the 200 simulation runs. In

some scenarios, the magnitude of lmean varied with sample size. Thus, we considered the ratio

lapprox/lmean, which is useful to quantify how well lapprox approximated lmean while excluding the

impact of the sample size. S1 Appendix describes the technical details of simulation studies.

The program code is provided in S2 Appendix.

Results

Real data application: Comparison between lapprox and lmean

Fig 1 gives comparisons between lmean and lapprox for joint GxE interaction and marginal asso-

ciation tests for each of five quantitative phenotypes and nine metabolites set as an environ-

ment variable on the ADNI dataset with 684 non-Hispanic Caucasian samples showing no

population stratification. The top left and right panels in Fig 1 give the results from joint GxE

interaction and marginal association tests, respectively, which show that lapprox approximated

lmean well as seen by that all points were gathered around the diagonal line. In the top left

panel, there were cases where lmean showed a large discrepancy from one, and two of them

are further investigated below. On the other hand, all points in the top right panel were con-

centrated around one, that is, the means of the chi-squared test statistics from marginal

association test were all made closer to one. This behavior differs from that of the joint GxE

interaction test, in which the target environment variable xi plays an important role in deter-

mining the test statistic distribution, and dependence of lapprox on xi cannot be ignored. In S1

Appendix, we show that lapprox is close to one if n!1 when xi = 1 for all i with p = 1 (i.e. the

model is reduced to the model for the marginal association test and the corresponding null dis-

tribution is 1df chi-squared), which in turn implies that the mean of the chi-squared statistics

is approximately one irrespective of what the null model is used.

The case with large lmean observed in the top left panel means the presence of systematic

inflation in genome-wide test statistics. Middle left panel of Fig 1 gives the comparison

between lapprox and lmean for the phenotypes with Box–Cox transformation based on normality.

However, systematic inflation still appeared. On the other hand, the Box–Cox transformation

optimized in terms of the closeness of lapprox mitigated the systematic inflation as seen in the

middle right panel of Fig 1.

The bottom left and right panels in Fig 1 give the results for binary phenotype, created by

dichotomizing quantitative phenotype, from joint GxE interaction and marginal association

tests for quantitative phenotypes, respectively. The approximation looks well for the 684 non-

Hispanic Caucasian samples, exhibiting a similar tendency of the results for quantitative phe-

notypes. Note that lapprox will not always be close to one for models other than Gaussian unless
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the null model is correctly specified. Nevertheless, lapprox for marginal association tests was

close to one in a real GWAS data application.

The proposed lapprox was derived under the assumption that each of genetic variants is an

independently and identically distributed random variable, and also is independent of pheno-

type, environment, and covariates. Therefore, the scaled mean of test statistics computed

from genotype data, simulated under the assumptions above, with other variables (phenotype,

Fig 1. Comparison between lapprox and lmean for joint GxE interaction and marginal association tests on ADNI-GWAS data for 684 non-

Hispanic Caucasian samples (ADNI684). Five phenotypes—height (HEIGHT), body mass index (BMI), whole brain (WholeBrain),

intracranial volume (ICV), and mini mental state exam (MMSE)—and nine environment variables: lysoPC.a.C16.0, PC.ae.C38.2, PC.ae.C40.3,

C10, PC.aa.C40.5, PC.ae.C36.3, SM‥OH‥C14.1, SM‥OH‥C22.1, and SM.C24.0. Top left: joint GxE interaction test (quantitative phenotype).

Top right: marginal association test (quantitative phenotype). Middle left: joint GxE interaction test (quantitative phenotype after Box–Cox

transformation optimized in terms of normality). Middle right: joint GxE interaction test (quantitative phenotype after Box–Cox transformation

optimized in terms of lapprox). Bottom left: joint GxE interaction test (binary phenotype created by dichotomizing quantitative phenotype).

Bottom right: marginal association test (binary phenotype created by dichotomizing quantitative phenotype).

https://doi.org/10.1371/journal.pone.0219825.g001
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environment, and covariates) being fixed, must be close to lapprox. The results with the artificial

genotype data for the 684 samples are given in S3 Fig, and the plots were very similar to Fig 1,

verifying our approximation.

Fig 2 gives comparisons between lmean and lapprox for joint GxE interaction and marginal

association tests with the five phenotypes and nine metabolites as the environment variable on

the ADNI dataset with 757 samples showing population stratification as seen in S1 Fig. The

top left and right panels in Fig 2 are the results from joint GxE interaction and marginal associ-

ation tests for quantitative phenotypes without PC adjustment, respectively. Unlike the case

with 684 samples (the top left and right panels in Fig 1), there were points deviated from diago-

nal line in both panels (lapprox often underestimated lmean for lower lmean). Results for binary

phenotypes were in panels in the third row, and the similar deviations were observed. The left

and right panels in the second row of Fig 2 are the results from joint GxE interaction and mar-

ginal association tests for quantitative phenotypes with adjustment for top 10 PCs, respectively.

In this case, all points were distributed around the diagonal line, meaning that the adjustment

by top 10 PCs could resolve the lapprox’s underestimation of lmean. For binary phenotypes given

in the bottom panels, lapprox’s underestimation was resolved similarly. S4 Fig provides the

results with adjustment for top 3 and top 5 PCs. No deviation was seen, implying that the PC

adjustment was still successful.

The results with the artificial genotype data for the 757 samples are given in S5 Fig. Unlike

Fig 2, there was no deviation between lmean and lapprox, which is the expected behavior since the

simulated genotype data was generated under the assumption that lapprox is derived. It in turn

implies that some of the assumptions for lapprox were violated in the cases of Fig 2 (the top pan-

els and the panels in the third row) where deviation was observed, and population stratifica-

tion could be one possible reason because PC adjustment resolved the deviation.

Real data application: Detailed analysis of two datasets that showed large

systematic inflation

Large discrepancy of lapprox from one suggests that the specified null model is problematic.

Here, we investigated two analyses that showed large discrepancy of lapprox from one as

described in the Materials and Methods section. Fig 3 gives the first example with PC.ae.C38.2

as the environment variable in the ADNI data with 684 samples. The value of lmean was 1.61. A

scatter plot of BMI versus the environment variable (Fig 3, top left) shows that a linear model

for the environment variable is inadequate and suggests a quadratic model for better fit to the

data. Given this consideration, we modified the null model by including a quadratic term, and

indeed this mitigated the problematic behavior as shown in the middle left panel of Fig 3; lmean
was reduced to 1.23. Alternatively, the plot suggests that there may be outliers. We calculated

the Cook’s distance [32] on linear regression model for BMI with explanatory variables, age,

sex, and PC.ae.C38.2, and a single observation of index 164 had Cook’s distance larger than

the mean plus 4×sd (standard deviation). See also S6 Fig for regression diagnostics plot. We

emphasized the influential observation in the panel by showing the index 164. When this sam-

ple was removed, the null model with linear effect mitigated the systematic inflation behavior

as shown in the middle right panel of Fig 3; lmean was reduced to 1.15.

The result of the robust joint GxE interaction test using the Almli’s program is given in the

bottom left panel of Fig 3. The systematic inflation still remained even when the robust test

was applied. The result of the genomic control adjustment is given in the bottom right panel of

Fig 3. The severe problematic behavior could not be resolved.

Fig 4 gives the second example that uses PC.ae.C40.3 as the environment variable for BMI

as phenotype in the ADNI data with 684 samples. The value of lmean was 3.03. A scatter plot
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(Fig 4, top left) of BMI versus the environment variable suggests that two points labeled as 164

and 324 on the right side could be outliers. We calculated the Cook’s distance on linear regres-

sion model for BMI with explanatory variables, age, sex, and PC.ae.C40.3, and observations

164 and 324 had Cook’s distance larger than the mean plus 4×sd (standard deviation), where

Fig 2. Comparison between lapprox and lmean for joint GxE interaction and marginal association tests on ADNI-GWAS data for 757

samples which showed population stratification (ADNI757). Five phenotypes—height (HEIGHT), body mass index (BMI), whole brain

(WholeBrain), intracranial volume (ICV), and mini mental state exam (MMSE)—and nine metabolite variables: lysoPC.a.C16.0, PC.ae.C38.2,

PC.ae.C40.3, C10, PC.aa.C40.5, PC.ae.C36.3, SM‥OH‥C14.1, SM‥OH‥C22.1, and SM.C24.0. Results are shown without and with adjustment

for top 10 principal components (PCs). Top left: joint GxE interaction test without PC adjustment (quantitative phenotype). Top right: marginal

association test without PC adjustment (quantitative phenotype). Left in the second row: joint GxE interaction test with adjustment for top 10

PCs (quantitative phenotype). Right in the second row: marginal association test with adjustment for top 10 PCs (quantitative phenotype). Left

in the third row: joint GxE interaction test without PC adjustment (binary phenotype created by dichotomizing quantitative phenotype). Right

in the third row: marginal association test without PC adjustment (binary phenotype created by dichotomizing quantitative phenotype). Bottom

left: joint GxE interaction test with adjustment for top 10 PCs (binary phenotype created by dichotomizing quantitative phenotype). Bottom

right: marginal association test with adjustment for top 10 PCs (binary phenotype created by dichotomizing quantitative phenotype).

https://doi.org/10.1371/journal.pone.0219825.g002
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Fig 3. Systematic inflation in gene-PC.ae.C38.2 (a metabolite) interaction test for body mass index (BMI) on ADNI-GWAS data with 684

samples. Joint GxE interaction test applies to BMI as a quantitative phenotype and PC.ae.C38.2 as the environment variable by adjusting sex and

age as covariates. Top left: scatter plot for BMI and PC.ae.C38.2 with emphasis on observation 164, which was the influential observation having

Cook’s distance larger than the mean plus 4×sd (standard deviation). Three null models are given: linear (all observations), BMI = β1Gl + β2Gl ×
PC.ae.C38.2 + γ1 + γ2sex + γ3age + γ4PC.ae.C38.2 with β1 = β2 = 0 for lth genetic variant Gl, quadratic (all observations), BMI = β1Gl + β2Gl × PC.

ae.C38.2 + γ1 + γ2sex + γ3age + γ4PC.ae.C38.2 + γ5PC.ae.C38.22 with β1 = β2 = 0 for lth genetic variantGl, linear (observation 164 removed), BMI

= β1Gl + β2Gl × PC.ae.C38.2 + γ1 + γ2sex + γ3age + γ4PC.ae.C38.2 with β1 = β2 = 0 for lth genetic variant Gl, where the influential observation

(index 164) is removed. Top right: quantile-quantile (QQ) plot from joint GxE interaction test with the linear null model on all observations.

Middle left: QQ plot from joint GxE interaction test with the quadratic null model for all observations. Middle right: QQ plot from joint GxE

interaction test with the quadratic null model for which observation 164 is removed. Bottom left: QQ plot from the Almli’s robust joint GxE

interaction test [16] with the linear null model for all observations. Bottom right: QQ plot from genomic control (GC) adjusted joint GxE

interaction test with the linear null model for all observations. lmean, the scaled mean of genome-wide test statistics, is one if the null model is

correctly specified.

https://doi.org/10.1371/journal.pone.0219825.g003
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Fig 4. Systematic inflation in gene-PC.ae.C40.3 (a metabolite) interaction test for body mass index (BMI) on ADNI-GWAS data with 684

samples. Joint GxE interaction test is applied with BMI as a quantitative phenotype and PC.ae.C40.3 as the environment variable wit sex and age

are adjusted. Top left: scatter plot for BMI and PC.ae.C40.3 with emphasis on observations 164 and 324, which were the influential observations

having Cook’s distance larger than the mean plus 4×sd (standard deviation), where observation 164 has larger Cook’s distance than observation

324. Three null models are given: linear (all observations), BMI = β1Gl + β2Gl × PC.ae.C40.3 + γ1 + γ2sex + γ3age + γ4PC.ae.C40.3 with β1 = β2 =

0 for lth genetic variant Gl, linear (observation 164 removed), BMI = β1Gl + β2Gl × PC.ae.C40.3 + γ1 + γ2sex + γ3age + γ4PC.ae.C40.3 with β1 = β2

= 0 for lth genetic variantGl, where the most influential observation (index 164) is removed, linear (observations 164 and 324 removed), BMI =

β1Gl + β2Gl × PC.ae.C40.3 + γ1 + γ2sex + γ3age + γ4PC.ae.C40.3 with β1 = β2 = 0 for lth genetic variant Gl, where two most influential

observations (164 and 324) are removed. Top right: quantile-quantile (QQ) plot from joint GxE interaction test with the linear null model for all

observations. Middle left: quantile-quantile (QQ) plot from joint GxE interaction test with the linear null model for which observation 164 is

removed. Middle right: quantile-quantile (QQ) plot from joint GxE interaction test with the linear null model for which observations 164 and

324 are removed. Bottom left: QQ plot from the Almli’s robust joint GxE interaction test [16] with the linear null model for all observations.

Bottom right: QQ plot from genomic control (GC) adjusted joint GxE interaction test with the linear null model for all observations. lmean, the

scaled mean of genome-wide test statistics, is one if the null model is correctly specified.

https://doi.org/10.1371/journal.pone.0219825.g004
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observation 164 had larger Cook’s distance than observation 324. See also S7 Fig for regression

diagnostics plot. When observation 164 was removed, the null model with linear effect miti-

gated the systematic inflation behavior as shown in the middle left panel of Fig 3; lmean was

reduced to 2.6. When observations 164 and 324 were removed, the null model with linear

effect further mitigated the systematic inflation behavior as shown in the middle right panel of

Fig 3; lmean was reduced to 1.06.

Figs 5 and 6 provide results of the BMI after Box–Cox transformation for the data with the

684 and 757 samples, respectively. The Box–Cox transformation of BMI based on normality

was insufficient to reduce the systematic inflation, as seen in the top right panels of Figs 5 and

6. On the other hand, the Box–Cox transformation of BMI based on lmean reduced the system-

atic inflation, as seen in the bottom right panels of Figs 5 and 6.

Simulation studies

Here, we provide the results of joint GxE interaction and marginal association tests from vari-

ous simulation studies. Tables 2 and 3 include particularly noteworthy results while S2 and S3

Tables include the remainings. In derivation of lapprox, we have assumed that genotypes are not

associated with phenotypes, environment and covariate variables. Simulation scenarios (bG,

bZ, bGE) = (0, 0, 0) and (0, 1, 0) satisfy the above assumptions except in scenarios 1a, 1b, 1c, 2a,

and 2b. In such cases, the approximation of lapprox to lmean was well as the ratio lapprox/lmean was

close to one. On the other hand, in scenarios (bG, bZ, bGE) = (1, 0, 0) and (0, 0, 1), phenotypes

are associated with genotypes, and hence the assumptions are not satisfied. In such cases, there

is no guarantee that lapprox approaches to lmean even if n is increased. Actually, there were sev-

eral scenarios showing the ratio lapprox/lmean for n = 10000 that was more different from one

than that for n = 1000. We provide brief summaries not mentioned above.

• Association among environment, covariate variables and/or genotypes (Scenarios 1a, 1b,

1c and 1d). In scenarios (bG, bZ, bGE) = (0, 0, 0) and (0, 1, 0) under the presence of the

association between covariate and environment variables, the assumption for the deriva-

tion of lapprox holds, that is, genotypes are not associated with phenotype, covariate/envi-

ronment variables. Indeed, lapprox approximated lmean well. On the other hand, in scenario

(bG, bZ, bGE) = (0, 1, 0) under the presence of the association between genotype and covari-

ate/environment variables, the assumption for the derivation of lapprox does not hold. Nev-

ertheless, lapprox well approximated lmean. Scenarios (bG, bZ, bGE) = (1, 0, 0) and (0, 0, 1)

correspond to the presence of the genetic effect, meaning that the approximation is not

guaranteed. Actually, lapprox was deviated from lmean in many cases. The magnitude of devi-

ation differed depending on the setup of environment/covariate variables. The results of

scenario 1d in S2 and S3 Tables showed that the presence of the association between the

covariate and environment variables did not make much difference from the baseline

scenario.

• Misspecified null model (Scenarios 2a, 2b, 2c, 2d, and 2e). In some scenarios, lmean took an

extremely large value, and then, lapprox had a large value correspondingly. In scenarios 2a

and 2b (i.e. covariate associated with genotypes was missed in the null model), no deviation

between lapprox and lmean was observed when no genotypic effect exist (i.e. (bG, bZ, bGE) = (0,

0, 0) and (0, 1, 0)), but lapprox was close to one while lmean deviated from one in other cases

(i.e. (bG, bZ, bGE) = (1, 0, 0) and (0, 0, 1)). The misspecified functional form of the null model

(i.e. scenario 2c) gave larger lmean, and lapprox could approximate the inflated lmean. The exis-

tence of outlier(s) tended to give large lmean just as in Figs 3 and 4. lmean in scenario 2d (i.e.

one outlier) was larger than that in scenario 2e (i.e. ten outliers).
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Fig 5. Gene-PC.ae.C38.2 (a metabolite) interaction test for Box–Cox transformed body mass index (BMI) on ADNI-GWAS data with 684

samples. Joint GxE interaction test applies to BMI as a quantitative phenotype and PC.ae.C38.2 as the environment variable with adjustment for

sex and age. Top left: scatter plot for Box–Cox transformed BMI (BMI subtracted the minimum and then added 1) optimized in terms of

normality (BC-transformed) and PC.ae.C38.2 with emphasis on observation 164, which was the influential observation having Cook’s distance

(based on BMI without transformation) larger than the mean plus 4×sd (standard deviation). Linear null model is given, BCnormality(BMI − min

BMI + 1) = γ1 + γ2sex + γ3age + γ4PC.ae.C38.2, where BCnormality denotes the Box–Cox transformation with the optimal parameter determined

by the closeness to normality of the transformed BMI. Top right: quantile-quantile (QQ) plot from joint GxE interaction test for BC-transformed

BMI (BMI subtracted the minimum and then added 1) with the linear null model on all observations. Bottom left: scatter plot for Box–Cox

transformed BMI (BMI subtracted the minimum and then added 1) optimized in terms of lapprox (BCl-transformed) and PC.ae.C38.2 with

emphasis on observation 164, which was the influential observation having Cook’s distance (based on BMI without transformation) larger than

the mean plus 4×sd (standard deviation). Linear null model is given, BClapprox ðBMI � min BMIþ 1Þ ¼ g1 þ g2sexþ g3ageþ g4PC:ae:C38:2,

where BClapprox denotes the Box–Cox transformation with the optimal parameter determined by the closeness of lapprox to one. Bottom right: QQ

plot from joint GxE interaction test for BCl-transformed BMI with the linear null model on all observations. lmean, the scaled mean of genome-

wide test statistics, is one if the null model is correctly specified.

https://doi.org/10.1371/journal.pone.0219825.g005
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Fig 6. Gene-PC.ae.C40.3 (a metabolite) interaction test for Box–Cox transformed body mass index (BMI) on ADNI-GWAS data with 684

samples. Joint GxE interaction test applies to BMI as a quantitative phenotype and PC.ae.C40.3 as the environment variable with adjustment for

sex and age. Top left: scatter plot for Box–Cox transformed BMI (BMI subtracted the minimum and then added 1) optimized in terms of

normality (BC-transformed) and PC.ae.C40.3 with emphasis on observations 164 and 324, which were the influential observations having

Cook’s distance (based on BMI without transformation) larger than the mean plus 4×sd (standard deviation). Linear null model is given,

BCnormality(BMI − min BMI + 1) = γ1 + γ2sex + γ3age + γ4PC.ae.C40.3, where BCnormality denotes the Box–Cox transformation with the optimal

parameter determined by the closeness to normality of the transformed BMI. Top right: quantile-quantile (QQ) plot from joint GxE interaction

test for BC-transformed BMI with the linear null model on all observations. Bottom left: scatter plot for Box–Cox transformed BMI (BMI

subtracted the minimum and then added 1) optimized in terms of lapprox (BCl-transformed) and PC.ae.C40.3 with emphasis on observations 164

and 324, which were the influential observations having Cook’s distance (based on BMI without transformation) larger than the mean plus 4×sd

(standard deviation). Linear null model is given, BClapprox ðBMI � min BMIþ 1Þ ¼ g1 þ g2sexþ g3ageþ g4PC:ae:C40:3, where BClapprox denotes

the Box–Cox transformation with the optimal parameter determined by the closeness of lapprox to one. Bottom right: QQ plot from joint GxE

interaction test for BCl-transformed BMI with the linear null model on all observations. lmean, the scaled mean of genome-wide test statistics, is

one if the null model is correctly specified.

https://doi.org/10.1371/journal.pone.0219825.g006
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Table 2. Comparison between lapprox and lmean in quantitative phenotype simulations.

Scenario GxE (n = 1000) Marginal (n = 1000) GxE (n = 10000) Marginal (n = 10000)

(bG, bZ, bGE) lapprox lmean lapprox
lmean

lapprox lmean lapprox
lmean

lapprox lmean lapprox
lmean

lapprox lmean lapprox
lmean

Base (0,0,0) 1.00 1.01 1.00 1.00 1.01 1.00 1.00 1.00 1.00 1.00 1.00 1.00

(0.03) (0.04) (0.02) (0.00) (0.03) (0.03) (0.01) (0.02) (0.02) (0.00) (0.03) (0.03)

Base (1,0,0) 1.01 1.12 0.90 1.00 1.23 0.82 1.00 2.02 0.49 1.00 3.04 0.33

(0.03) (0.04) (0.02) (0.00) (0.04) (0.03) (0.01) (0.04) (0.01) (0.00) (0.08) (0.01)

Base (0,1,0) 1.01 1.01 1.00 1.00 1.01 1.00 1.00 1.00 1.00 1.00 1.00 1.00

(0.04) (0.04) (0.02) (0.00) (0.03) (0.03) (0.01) (0.02) (0.02) (0.00) (0.03) (0.03)

Base (0,0,1) 1.05 1.06 0.99 1.00 1.01 0.99 1.31 2.41 0.54 1.00 1.00 1.00

(0.04) (0.05) (0.02) (0.00) (0.03) (0.03) (0.02) (0.07) (0.01) (0.00) (0.03) (0.03)

1a (0,0,0) 1.01 1.01 1.00 1.00 1.01 1.00 1.00 1.00 1.00 1.00 1.00 1.00

(0.03) (0.04) (0.02) (0.00) (0.03) (0.03) (0.01) (0.02) (0.02) (0.00) (0.03) (0.03)

1a (1,0,0) 1.01 1.07 0.94 1.00 1.13 0.89 1.00 1.92 0.52 1.00 2.84 0.35

(0.03) (0.04) (0.02) (0.00) (0.04) (0.03) (0.01) (0.04) (0.01) (0.00) (0.07) 0.01)

1a (0,1,0) 1.00 1.01 1.00 1.00 1.01 1.00 1.00 1.00 1.00 1.00 1.00 1.00

(0.03) (0.04) (0.02) (0.00) (0.03) (0.03) (0.01) (0.02) (0.02) (0.00) (0.03) (0.03)

1a (0,0,1) 1.29 1.39 0.93 1.00 1.01 0.99 1.32 2.47 0.53 1.00 1.00 1.00

(0.08) (0.09) (0.02) (0.00) (0.03) (0.03) (0.02) (0.07) (0.01) (0.00) (0.03) (0.03)

2a (0,0,0) 1.01 1.01 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

(0.03) (0.04) (0.02) (0.00) (0.03) (0.03) (0.01) (0.02) (0.02) (0.00) (0.03) (0.03)

2a (1,0,0) 1.00 1.13 0.89 1.00 1.25 0.80 1.00 2.26 0.44 1.00 3.51 0.29

(0.03) (0.04) (0.02) (0.00) (0.05) (0.03) (0.01) (0.05) (0.01) (0.00) (0.09) (0.01)

2a (0,1,0) 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

(0.03) (0.04) (0.02) (0.00) (0.03) (0.03) (0.01) (0.02) (0.02) (0.00) (0.03) (0.03)

2a (0,0,1) 1.34 1.46 0.92 1.00 1.00 1.00 1.23 1.99 0.62 1.00 1.00 1.00

(0.07) (0.08) (0.02) (0.00) (0.03) (0.03) (0.02) (0.06) (0.01) (0.00) (0.03) (0.03)

2c (0,0,0) 2.25 2.24 1.01 1.00 1.00 1.00 2.34 2.34 1.00 1.00 1.00 1.00

(0.24) (0.24) (0.03) (0.00) (0.03) (0.03) (0.08) (0.11) (0.03) (0.00) (0.03) (0.03)

2c (1,0,0) 2.16 2.20 0.98 1.00 1.09 0.93 2.27 2.39 0.95 1.00 1.23 0.81

(0.25) (0.26) (0.03) (0.00) (0.04) (0.03) (0.08) (0.11) (0.02) (0.00) (0.04) (0.02)

2c (0,1,0) 2.30 2.29 1.00 1.00 1.00 1.00 2.33 2.34 1.00 1.00 1.00 1.00

(0.23) (0.23) (0.03) (0.00) (0.03) (0.03) (0.09) (0.11) (0.03) (0.00) (0.03) (0.03)

2c (0,0,1) 2.30 2.33 0.99 1.00 1.00 1.00 2.31 2.63 0.88 1.00 1.00 1.00

(0.23) (0.23) (0.03) (0.00) (0.03) (0.03) (0.10) (0.13) (0.02) (0.00) (0.03) (0.03)

2d (0,0,0) 1.00 1.00 0.99 1.00 1.00 1.00 0.99 1.00 0.99 1.00 1.00 1.00

(0.30) (0.22) (0.07) (0.00) (0.03) (0.03) (0.23) (0.17) (0.05) (0.00) (0.03) (0.03)

2d (1,0,0) 0.99 1.11 0.87 1.00 1.24 0.81 0.98 1.29 0.76 1.00 1.60 0.63

(0.36) (0.26) (0.08) (0.00) (0.04) (0.03) (0.20) (0.16) (0.06) (0.00) (0.05) (0.02)

2d (0,1,0) 49.69 35.91 1.38 1.00 1.00 1.00 190.26 139.98 1.36 1.00 1.00 1.00

(6.77) (4.93) (0.02) (0.00) (0.03) (0.03) (10.68) (8.48) (0.03) (0.00) (0.03) (0.03)

2d (0,0,1) 13.70 10.09 1.36 1.00 1.01 1.00 24.05 18.15 1.32 1.00 1.00 1.00

(3.75) (2.68) (0.03) (0.00) (0.03) (0.03) (4.29) (3.10) (0.03) (0.00) (0.03) (0.03)

Simulation results from 200 replicates under scenarios Base, 1a, 2a, 2c, and 2d with four effect size scenarios given as triplets (bG, bZ, bGE):(0, 0, 0), (1, 0, 0), (0, 1, 0), and

(0, 0, 1) with additive genotype coding. The values are the means and standard errors (in parentheses) of the proposed approximation (lapprox), the scaled mean test

statistics (lmean) and the ratio (lapprox/lmean) for joint GxE interaction and marginal association tests. bG, bZ, and bGE are parameters of genotype, covariate and GxE

interaction effects, respectively (0 corresponds to no effect); n denotes the sample size.

https://doi.org/10.1371/journal.pone.0219825.t002
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Table 3. Comparison between lapprox and lmean in binary phenotype simulations.

Scenario GxE (n = 1000) Marginal (n = 1000) GxE (n = 10000) Marginal (n = 10000)

(bG, bZ, bGE) lapprox lmean lapprox
lmean

lapprox lmean lapprox
lmean

lapprox lmean lapprox
lmean

lapprox lmean lapprox
lmean

Base (0,0,0) 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

(0.00) (0.02) (0.02) (0.00) (0.03) (0.03) (0.00) (0.02) (0.02) (0.00) (0.03) (0.03)

Base (1,0,0) 1.00 1.02 0.99 1.00 1.03 0.98 1.00 1.00 1.00 1.00 1.00 1.00

(0.01) (0.02) (0.02) (0.00) (0.03) (0.03) (0.00) (0.02) (0.02) (0.00) (0.03) (0.03)

Base (0,1,0) 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

(0.02) (0.03) (0.02) (0.00) (0.03) (0.03) (0.01) (0.02) (0.02) (0.00) (0.03) (0.03)

Base (0,0,1) 1.03 1.05 0.98 1.00 1.00 1.00 1.01 1.01 1.00 1.00 1.00 1.00

(0.02) (0.03) (0.02) (0.00) (0.03) (0.03) (0.00) (0.02) (0.02) (0.00) (0.03) (0.03)

1a (0,0,0) 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

(0.00) (0.02) (0.02) (0.00) (0.03) (0.03) (0.00) (0.02) (0.02) (0.00) (0.03) (0.03)

1a (1,0,0) 1.00 1.01 0.99 1.00 1.02 0.99 1.00 1.00 1.00 1.00 1.00 1.00

(0.00) (0.02) (0.02) (0.00) (0.03) (0.03) (0.00) (0.02) (0.02) (0.00) (0.03) (0.03)

1a (0,1,0) 1.00 1.01 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

(0.02) (0.03) (0.02) (0.00) (0.04) (0.04) (0.01) (0.02) (0.02) (0.00) (0.03) (0.03)

1a (0,0,1) 1.03 1.05 0.98 1.00 1.00 1.00 1.01 1.01 1.00 1.00 1.00 1.00

(0.02) (0.03) (0.02) (0.00) (0.03) (0.03) (0.00) (0.02) (0.02) (0.00) (0.03) (0.03)

2a (0,0,0) 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

(0.00) (0.02) (0.02) (0.00) (0.03) (0.03) (0.00) (0.02) (0.02) (0.00) (0.03) (0.03)

2a (1,0,0) 1.00 1.02 0.98 1.00 1.04 0.97 1.00 1.00 1.00 1.00 1.00 1.00

(0.01) (0.03) (0.02) (0.00) (0.04) (0.04) (0.00) (0.02) (0.02) (0.00) (0.03) (0.03)

2a (0,1,0) 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

(0.02) (0.03) (0.02) (0.00) (0.03) (0.03) (0.00) (0.02) (0.02) (0.00) (0.03) (0.03)

2a (0,0,1) 1.03 1.05 0.98 1.00 1.00 1.00 1.01 1.01 1.00 1.00 1.00 1.00

(0.03) (0.04) (0.02) (0.00) (0.03) (0.03) (0.00) (0.02) (0.02) (0.00) (0.03) (0.04)

2c (0,0,0) 0.86 0.86 1.00 1.00 1.00 1.00 0.85 0.85 1.00 1.00 1.00 1.00

(0.01) (0.02) (0.02) (0.00) (0.03) (0.03) (0.00) (0.02) (0.02) (0.00) (0.03) (0.03)

2c (1,0,0) 0.92 0.94 0.98 1.00 1.03 0.97 0.88 0.89 1.00 1.00 1.00 1.00

(0.02) (0.02) (0.02) (0.00) (0.03) (0.03) (0.00) (0.02) (0.02) (0.00) (0.03) (0.03)

2c (0,1,0) 0.89 0.90 1.00 1.01 1.00 1.00 0.89 0.89 1.00 1.00 1.00 1.00

(0.02) (0.03) (0.02) (0.00) (0.03) (0.03) (0.01) (0.02) (0.02) (0.00) (0.03) (0.03)

2c (0,0,1) 0.86 0.86 1.00 1.00 1.01 1.00 0.95 0.95 1.00 1.01 1.03 0.98

(0.01) (0.03) (0.02) (0.00) (0.03) (0.03) (0.01) (0.02) (0.02) (0.00) (0.03) (0.03)

2d (0,0,0) 0.99 1.00 0.99 1.00 1.01 1.00 1.02 1.01 1.00 1.00 1.00 1.01

(0.19) (0.14) (0.05) (0.00) (0.03) (0.03) (0.16) (0.12) (0.04) (0.00) (0.03) (0.03)

2d (1,0,0) 1.03 1.03 0.99 1.00 1.03 0.97 1.03 1.02 1.01 1.00 1.00 1.00

(0.26) (0.18) (0.06) (0.00) (0.03) (0.03) (0.17) (0.13) (0.04) (0.00) (0.03) (0.03)

2d (0,1,0) 9.15 5.86 1.30 1.00 1.00 1.00 2.15 2.13 1.01 1.00 1.00 1.00

(8.73) (4.97) (0.34) (0.01) (0.03) (0.03) (1.17) (1.15) (0.03) (0.00) (0.03) (0.03)

2d (0,0,1) 11.34 6.65 1.41 0.99 0.99 1.00 2.11 2.08 1.01 0.99 0.99 1.00

(9.50) (5.09) (0.41) (0.01) (0.03) (0.03) (1.18) (1.15) (0.03) (0.01) (0.03) (0.03)

Simulation results from 200 replicates under scenarios Base, 1a, 2a, 2c, and 2d with four effect size scenarios given as triplets (bG, bZ, bGE):(0, 0, 0), (1, 0, 0), (0, 1, 0), and

(0, 0, 1) with additive genotype coding. The values are the means and standard errors (in parentheses) of the proposed approximation (lapprox), the scaled mean test

statistics (lmean) and the ratio (lapprox/lmean) for joint GxE interaction and marginal association tests. bG, bZ, and bGE are parameters of genotype, covariate and GxE

interaction effects, respectively (0 corresponds to no effect); n denotes the sample size.

https://doi.org/10.1371/journal.pone.0219825.t003
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• Environment/covariate variable distribution (Scenarios 3a, 3b, 3c, and 3d). Under the

absence of the genetic effect (i.e. (bG, bZ, bGE) = (0, 0, 0) and (0, 1, 0)), the approximation of

lapprox to lmean looked well. Under the presence of the genetic effect (i.e. (bG, bZ, bGE) = (1, 0,

0) and (0, 0, 1)), where the approximation is not guaranteed, lapprox was deviated from lmean
as expected. The magnitude of deviation differed depending on the setup of environment/

covariate variables.

• Genotype distribution (Scenarios 4a, 4b, and 4c). The difference in MAF distribution gave

no much difference in the approximation as our derivation does not require specific MAF

distribution. Correlation between genotypes did not alter the approximation in terms of

mean values of lapprox and lmean, but the result under the presence of correlation was more

variable than the result under the absence of correlation. This is perhaps due to that the cor-

relation between genetic variants reduced the effective number of independent loci.

For binary phenotype simulations (i.e. Table 3 and S3 Table), lmeans were less deviated from

one compared with the results on quantitative phenotypes (i.e. Table 2 and S2 Table), probably

due to the fact that binary phenotype has lower variation than quantitative phenotype, but the

overall tendency was similar to the quantitative simulations. Regarding genotype coding, the

additive coding gave larger discrepancy of lapprox from lmean than recessive and dominant cod-

ings, and the recessive coding resulted in smallest discrepancy, which is due to the assignment

of effect size 1 regardless of genotype coding.

Discussion

In this paper, we presented a novel closed-form approximation to the mean of the chi-squared

statistics for genome-wide joint GxE interaction tests by assuming that the null model is well

specified. Interestingly, characteristics of genetic loci no longer appear in the approximation

formula. It allows quick assessment of systematic inflation/deflation due to null model misspe-

cification without requiring a genome-wide scan. To the best of our knowledge, there are no

approach comparable to our proposed method. The approximation formula is particularly

useful when many null models for GxE interaction analyses must be handled, e.g. with hun-

dreds of environment variables such as the metabolites considered in this paper. For example,

our examples in Figs 3 and 4 showing systematic inflation were identified by applying the

proposed statistic; it would have been laborious work if all null models with 117 metabolites

for large number of phenotypes were exhaustively investigated by genome-wide scan as well

as by detailed examination of null models, because the procedure involves various visual

inspections.

Once problematic null models have been detected, detailed investigation of adequacy of the

null model must be made, for example by standard regression diagnostics, e.g. modeling of

covariate effects, presence of outliers and influential samples, or heteroscedasticity. We also

showed that existing methods—the robust test and genomic control-adjustment—may not

always work. Note that the robust test differs from regression methods in robust statistics [33,

34] in which the focus is on issues owing to outliers. The null model misspecification may

arise not only by outliers but also by misspecification of functional form or statistical model.

The robust test only accounts for the impact of misspecification on the variance, whereas no

correction is made for bias, which in general depends on the true model and thus is difficult to

correct without additional modeling assumption. If bias is not negligible, the robust test may

fail to resolve the problematic behavior. Rendering the null models more sophisticated, such as

by better specifying the environment variable effect or by removing outliers, could reduce
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systematic inflation or deflation. Manual removal of outliers is not straightforward, in particu-

lar, when a large number of covariates are used. In this case, robust linear [33, 34] or logistic

regression [35] are attractive approaches. If the misspecification of the functional form of the

environment variable is the main concern, it is worth to apply the method recently developed

by [36].

Theoretically, the test statistic for the marginal association test is inflated from w2
1

to lw2
1

under the presence of population stratification [17, 24, 37, 38]. In this situation, the test statis-

tics divided by the inflation factor λ follow w2
1

distribution, which is the key idea of the genomic

control method [17]. In contrast, in the case of problematic behavior for the joint GxE interac-

tion tests due to null model misspecification, it is unclear what the distribution of test statistics

is. The examples above demonstrate that genomic control-adjusted p-values do not always

work. The above additional analyses also suggest that a more sophisticated null model or suit-

able statistical method could resolve the problematic behavior.

We also showed that the standard Box–Cox transformation based on normality may not

always resolve the problematic behavior, whereas the Box–Cox transformation based on lapprox
can directly resolve systematic inflation. Although we recommend detailed investigation of

problematic null models, the Box–Cox transformation based on lapprox can provide a quick

solution.

The proposed approximation is derived by assuming that the genotype data at each locus

are independently and identically distributed across subjects (but the distribution across loci

can differ and be correlated due to linkage disequilibrium). This simplification enabled us to

derive a closed-form formula. On the one hand, our theory does not cover the presence of pop-

ulation stratification, which is the limitation of our approach. Indeed, we observed situations

where the approximation failed in the presence of population stratification (Fig 2). Interest-

ingly, the failure disappeared by adjusting for PCs estimated from genome-wide SNP data.

The extensibility of the phenomenon to other datasets is an interesting future topic.

The statistic lapprox quantifies problematic behavior based on the extent of the discrepancy

from one, as with the genomic inflation factor. For example, we can roughly judge that null

models having lapprox within the range [0.9, 1.1] or [0.95, 1.05] are not a problem, so that a

genome-wide scan can be safely conducted.

In derivation of the approximation formula, we imposed the technical condition of no

genetic effect on phenotype, covariates, and environment variables. This assumption may not

necessarily hold in real GWAS data. However, as seen in the real ADNI data application, the

approximation worked well in most of the cases. The simulation studies also showed that the

approximation worked under the scenarios with no genetic effect on phenotype (i.e. (bG, bZ,

bGE) = (0, 0, 0) and (0, 1, 0)). In real GWAS, we sometimes encounter the situation where the

marginal association test gives a very limited number of loci being genome-wide significant

while other loci follow the expected null distribution (as checked by the quantile–quantile plot

of genome-wide p-values), implying that the majority of loci have approximately no genetic

effect on phenotype. In such cases, we expect that the approximation works well.

In contrast, if many loci have effect on phenotype, covariates, and environment variables,

the above assumption does not hold, e.g. under the polygenic architecture [39] or in the candi-

date gene studies. As seen in the simulation studies as well as in the ADNI data application

with 757 samples (c.f. Fig 2), the presence of genetic effect on phenotype yielded discrepancy

between lapprox and lmean. In the cases with lapprox far from one, lmean was also far from one,

meaning that lapprox far from one indicates systematic inflation or deflation. In contrast, lapprox
close to one does not guarantee the absence of systematic inflation or deflation. Simulation sce-

narios 2a and 2b correspond to the above phenomenon. Specifically, ignorance of covariates
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associated with genotypes and phenotype made a deviation of lmean from one but lapprox was

still close to one. In this case, lapprox was unable to detect the systematic inflation, which means

that the proposed approximation fails if confounding factors (or the surrogate variables) are

unavailable and the genetic variants caused the problem, e.g. due to population stratification as

in the ADNI data with 757 samples (c.f. Fig 2).

One might consider that traditional goodness-of-fit tests may be used just like lapprox. How-

ever, this would reject most of the null models when the sample size is very large because the

test requires correct specification of the true model, which is rarely achieved with real data

[40]. On the other hand, the criterion based on lapprox allows one to explore null models that

give acceptably less systematic departure of the test statistics distribution. The requirement is

less strict than the correct model specification needed for goodness-of-fit tests. Our approxi-

mation is for the score statistics. For the Wald and likelihood ratio tests, lapprox is still useful, at

least for the purpose of identifying null model misspecification, because the Wald and likeli-

hood ratio tests are asymptotically the same as the score test.

We conclude that our proposed approximation is useful to quickly assess systematic infla-

tion/deflation due to null model misspecification without requiring a genome-wide scan. It

helps researchers to reconsider and improve null model specification. The benefit should be

great when many covariates and environment variables are considered.

Supporting information

S1 Fig. 1st and 2nd PCs (principal components) plot for 757 individuals in ADNI data.

PCs were computed by the EIGENSOFT package using GWAS data with 757 ADNI samples.

The first and second PCs for the 757 samples were provided. Ethnic group label for each indi-

vidual is taken from PTRACCAT object in ADNIMERGE package: American Indian or Alas-

kan Native (Am Indian/Alaskan), Asian (Asian), Hawaiian/Other PI (Hawaiian or Other

Pacific Islander), Black or African American (Black), White (White), More than One Reported

(More than one), Unknown or Not Reported (Unknown).

(EPS)

S2 Fig. Scatter plots of the phenotype–environment pairs showing lapprox> 1.5 from five

phenotypes and 117 metabolite variables. lapprox> 1.5 was computed for the ADNI 684 non-

Hispanic Caucasian samples. Phenotypes: HEIGHT (height, cm), BMI (body mass index, kg/
m2), WholeBrain (whole-brain volume, cm3), and MMSE (mini mental state examination,

score); Metabolites as environment variables: C10.2, C10.2, C4, C5, PC.aa.C42.6, PC.ae.C38.2,

PC.ae.C40.3, PC.ae.C44.3, C10.2, C5.DC‥C6.OH., C5.DC‥C6.OH.

(EPS)

S3 Fig. Comparison between lapprox and lmean for joint GxE interaction and marginal asso-

ciation tests on ADNI-GWAS data for 684 non-Hispanic Caucasian samples with simu-

lated genotype data. Joint GxE interaction and marginal association tests are carried out on

ADNI-GWAS data for 684 non-Hispanic Caucasian samples where only the real genotype

data was replaced by simulation with 10000 loci independently generated under linkage equi-

librium, where MAFs are set by uniform distribution on [0.05, 0.5] (ADNI684sim) Pheno-

types, covariates and environment variables in real data are fixed. Five phenotypes—height

(HEIGHT), body mass index (BMI), whole brain (WholeBrain), intracranial volume (ICV),

and mini mental state exam (MMSE)—and nine environment variables: lysoPC.a.C16.0, PC.

ae.C38.2, PC.ae.C40.3, C10, PC.aa.C40.5, PC.ae.C36.3, SM‥OH‥C14.1, SM‥OH‥C22.1, and

SM.C24.0. Top left: joint GxE interaction test (quantitative phenotype). Top right: marginal

association test (quantitative phenotype). Middle left: joint GxE interaction test (quantitative
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phenotype after Box–Cox transformation optimized in terms of normality). Middle right:

joint GxE interaction test (quantitative phenotype after Box–Cox transformation optimized in

terms of lapprox). Bottom left: joint GxE interaction test (binary phenotype created by dichoto-

mizing quantitative phenotype). Bottom right: marginal association test (binary phenotype

created by dichotomizing quantitative phenotype).

(EPS)

S4 Fig. Comparison between lapprox and lmean for joint GxE interaction and marginal

association tests on ADNI-GWAS data for 757 samples showing population stratification

with adjustment for top 3 and 5 principal components. Comparison between lapprox and

lmean, for which population stratification exists, for joint GxE interaction and marginal

association tests on ADNI-GWAS data for 757 samples showing population stratification

(ADNI757). Five phenotypes—height (HEIGHT), body mass index (BMI), whole brain

(WholeBrain), intracranial volume (ICV), and mini mental state exam (MMSE)—and nine

metabolite variables: lysoPC.a.C16.0, PC.ae.C38.2, PC.ae.C40.3, C10, PC.aa.C40.5, PC.ae.

C36.3, SM‥OH‥C14.1, SM‥OH‥C22.1, and SM.C24.0. Results are shown without and with

adjustment for top 10 principal components (PCs). Top left: joint GxE interaction test with

adjustment for top 3 PCs (quantitative phenotype). Top right: marginal association test with

adjustment for top 3 PCs (quantitative phenotype). Left in the second row: joint GxE interac-

tion test with adjustment for top 5 PCs (quantitative phenotype). Right in the second row:

marginal association test with adjustment for top 5 PCs (quantitative phenotype). Left in

the third row: joint GxE interaction test with adjustment for top 3 PCs (binary phenotype

created by dichotomizing quantitative phenotype). Right in the second row: marginal associ-

ation test with adjustment for top 3 PCs (binary phenotype created by dichotomizing quanti-

tative phenotype). Bottom left: joint GxE interaction test with adjustment for top 5 PCs

(binary phenotype created by dichotomizing quantitative phenotype). Bottom right: mar-

ginal association test with adjustment for top 5 PCs (binary phenotype created by dichoto-

mizing quantitative phenotype).

(EPS)

S5 Fig. Comparison between lapprox and lmean for joint GxE interaction and marginal associ-

ation tests on ADNI-GWAS data for 757 samples with simulated genotype data. Joint GxE

interaction and marginal association tests are carried out on ADNI-GWAS data for 757 sam-

ples where only the real genotype data, which showed population stratification, was replaced by

simulation with 10000 loci independently generated under linkage equilibrium, where MAFs

are set by uniform distribution on [0.05, 0.5] (ADNI757sim). Phenotypes, covariates, and envi-

ronment variables in real data are fixed. Five phenotypes—height (HEIGHT), body mass index

(BMI), whole brain (WholeBrain), intracranial volume (ICV), and mini mental state exam

(MMSE)—and nine metabolite variables: lysoPC.a.C16.0, PC.ae.C38.2, PC.ae.C40.3, C10, PC.

aa.C40.5, PC.ae.C36.3, SM‥OH‥C14.1, SM‥OH‥C22.1, and SM.C24.0. Results are shown with

adjustment for top 3 and 5 principal components (PCs). Top left: joint GxE interaction test

without PC adjustment (quantitative phenotype). Top right: joint GxE interaction test with

adjustment for top 10 PCs (quantitative phenotype). Left in the second row: marginal associa-

tion test without PC adjustment (quantitative phenotype). Right in the second row: marginal

association test with adjustment for top 10 PCs (quantitative phenotype). Left in the third row:

joint GxE interaction test without PC adjustment (binary phenotype created by dichotomizing

quantitative phenotype). Right in the third row: joint GxE interaction test with adjustment for

top 10 PCs (binary phenotype created by dichotomizing quantitative phenotype). Bottom left:

marginal association test without PC adjustment (binary phenotype created by dichotomizing

quantitative phenotype). Bottom right: marginal association test with adjustment for top 10
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PCs (binary phenotype created by dichotomizing quantitative phenotype).

(EPS)

S6 Fig. Regression diagnostics plots from linear model fit of BMI on PC.ae.C38.2 in the

ADNI data with 684 samples generated by “plot” for “lm” result.

(EPS)

S7 Fig. Regression diagnostics plots from quadratic model fit of BMI on PC.ae.C40.3 in

the ADNI data with 684 samples generated by “plot” for “lm” result.

(EPS)

S1 Table. lapprox on ADNI-GWAS data for 684 non-Hispanic Caucasian samples. lapprox
computed for joint GxE interaction on ADNI-GWAS data for 684 non-Hispanic Caucasian

samples, where sex and age are adjusted for, with respect to five quantitative phenotypes,

height (HEIGHT), body mass index (BMI), whole brain (WholeBrain), intracranial volume

(ICV), and mini mental state exam (MMSE), and 117 metabolite variables as environment var-

iable.

(CSV)

S2 Table. Comparison between lapprox and lmean in quantitative phenotype simulations.

Additional quantitative phenotype simulation results.

(PDF)

S3 Table. Comparison between lapprox and lmean in binary phenotype simulations. Addi-

tional binary phenotype simulation results.

(PDF)

S1 Appendix. Technical details. Details of theoretical results and simulation studies.

(PDF)

S2 Appendix. Program code for simulation studies. R code for simulation studies, including

a function lapprox to compute lapprox using phenotype, environment and covariate variables

as input.

(R)
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